Segmentation YAML References
- 21 Dec 2022
- 2 Minutes to read
- Print
- DarkLight
- PDF
Segmentation YAML References
- Updated on 21 Dec 2022
- 2 Minutes to read
- Print
- DarkLight
- PDF
Article summary
Did you find this summary helpful?
Thank you for your feedback
Segmentation training jobs use the keys listed in the table below.
YAML Key | Description |
---|---|
dataset | The dataset that the job is dependent on |
train | Model training hyperparameters |
model | Classification model and parameters |
loss | Loss function to use |
eval | Parameters for evaluation |
monitor_metric | Metrics to monitor |
metrics | Monitoring metrics for the job |
dataset
The following parameters can be used to load datasets.
train_split_key
- Type: String
- Default: Train
- Choices: train/test/dev
- Description: The name given to the data split that will be used for training.
test_split_key
- Type: String
- Default: dev
- Choices: train/test/dev
- Description: The name given to the data split that will be used for testing.
val_split_key
- Type: String
- Default: dev
- Choices: train/test/dev
- Description: The name given to the data split that will be used for validation.
train
The following parameters can be used to define model hyperparameters.
batch_size
- Type: Integer
- Default: 8
- Value Range: 1 <= batch_size
- Description: Number of examples/images in each training batch. The minimum batch size is 1.
epoch
- Type: Integer
- Default: 200
- Value Range: 1 <= epoch <=1000
- Description: The number of epochs to train the model. If you turn on early stopping, the actual training epoch may be smaller.
learning_rate
- Type: Float
- Default: 0.0001
- Value Range: 0 < learning_rate < 1.0
- Description: The learning rate used to update the weights.
validation_run_freq
- Type: Integer
- Default: 1
- ValueRange: 1 <= validation_run_freq
- Description: Number of epochs between validation runs.
early_stop
- Type: Object
- Description: Configuration for stopping training when a monitored metric has stopped improving.
- Properties:
- min_delta
- Type: Float
- Default: 0.01
- Description: Minimum change in the monitored quantity to qualify as an improvement.
- min_epochs
- Type: Integer
- Default: 40
- Description: Number of epochs with no improvement after which training will be stopped.
- min_delta
auto_tuning
- Type: Object
- Description: Configuration for automated hyperparameter tuning.
- Properties:
- class_weights
- Type: Boolean
- Default: True
- Description: Whether to use automated class weight tuning with pixel counts in the train and valid splits.
- class_weights_method
- Type: Integer
- Default: 0
- Choices: 0, 1, 2
- Description: Which method to use to tune class weights
debug - Type: Boolean
- Default: False
- Description: Whether to turn on the debug mode of auto-tuning process.
- class_weights
model
The following parameters can be used to specify which Segmentation model to use.
avi
- Type: Object
- Description: Specifies the python library from where the model is implemented.
- Properties:
- Unet:
- Type: Object
- Description: The UNet parser class.
- Properties:
- backbone_name
- Type: string
- Default: ResNet34
- Choices:
- ResNet18
- ResNet34
- ResNet50
- Description: The backbone to use in RetinaNet.
- ResNet18
- Type: string
- output_depth
- Type: integer
- Value Range: 1 <= output_depth
- Description: The number of classes. Number of defective class plus OK class.
- input_shape
- Type: Array
- Description: Shape of the images.
- Items:
- item_1
- Default: 512
- Value Range: 1 <= item_1 <= 1024
- Multiply of: 32
- Description: Height of the image.
- Default: 512
- item_2
- Default: 512
- ValueRange: 1 <= item_2 <= 1024
- Multiply of: 32
- Description: Width of the image.
- Default: 512
- item_3
- Default: 3
- Value Range: 1 <= item_3 <= 4
- Description: This is the channels of the image (1 for grayscale, 2 for grayscale + alpha, 3 for RGB, 4 for RGB + alpha).
- Default: 3
- activation
- Type: String
- Default: Softmax
- Choices:
- Softmax
- Sigmoid
- ValueRange: 0 <= nms_threshold <= 1
- Description: Last layer activation function.
- encoder_weights
- Type: String | Null
- Default: Imagenet
- Choices:
- null
- imagenet
- Description: Load imagenet pre-trained weights to the backbone or randomly
decoder_block_type. - Type: String
- Default: Transpose
- Choices:
- Transpose
- Upsampling
- Descriptions: Type of the decoder block type in segmentation models repo.
- item_1
- backbone_name
- Unet:
loss
The following parameters specify the loss functions to use for the Classification and regression head of the model.
CategoricalCrossEntropy
- Type: Object
- Description: CategoricalCrossEntropy
- Properties:
- weights
- Type: Union[float, array[float]]
- Default: 7.0
- Value Range: 0 <= weights
- Description: Weights to apply to each label in the loss function.
- Item Type: float
- from_logits
- Type: Boolean
- Default: false
- Description: Whether the loss is computed from the logits of the network or from sigmoid activations.
- weights
BinaryCrossEntropy
- Type: Object
- Description: CategoricalCrossEntropy
- Properties:
- weights
- Type: Union[float, array[float]]
- Default: 7.0
- Value Range: 0 <= weights
- Description: Weights to apply to each label in the loss function.
- Item Type: float
- from_logits
- Type: Boolean
- Default: False
- Description: Whether the loss is computed from the logits of the network or from sigmoid activations.
- weights
eval
The following parameters can be used in the evaluation phase:
postprocessing
- Type: Object
- Description: The configuration for post-processing steps.
- Properties:
- output_type
- Type: String
- Default: Segmentation
- Choices:
- Classification
- Segmentation
- Description: The kind of output after preprocessing
- iou_threshold
- Type: float
- Default: 0.5
- Value Range: 0 <= iou_threshold <= 1
- Description: The IoU threshold to determine True Positive and False Positive.
- transforms
- Type: array | null
- Items:
- Type: Post-processing transforms
- Description: The transformations to apply in post-processing steps to both ground truth and prediction.
- gt_transforms
- Type: array | null
- Items:
- Type: Post-processing transforms
- Description: The transformations to apply in post-processing steps to ground truth only.
pred_transforms - Type: array | null
- Items:
- Type: Post-processing transforms
- Description: The transformations to apply in post-processing steps to prediction only.
- output_type
Was this article helpful?